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3. Concluding remarks 
The probabilistic approaches for the estimation of 
quartet invariants in P1 and P1 by Hauptman and 
by Giacovazzo have been further developed to derive 
the joint probability distribution function (including 
terms up to order N -1) of n phases given p->n 
moduli. The formulae (14) and (21) are obtained. 

In (14) the weights w and w' suggest that a cross 
term of a quartet with large known modulus but 
unknown phase provides a positive contribution to 
Q [see (15)], while a negative contribution is provided 
by a cross term when both its modulus and its phase 
are known. According to (21), a cross term with 
known large modulus will provide a positive contribu- 
tion to Q" no matter whether the corresponding phase 
is known or not. Such behaviour should have striking 
consequences in practical applications. Indeed, as 
long as the largest [EJ values are phased during the 
phasing process, (14) and (21) will use such informa- 
tion in different ways. In particular, the positivity of 
the quartet term is expected to decrease in (14) and 
increase in (21). 

In conclusion, while the approaches of Hauptman 
and Giacovazzo produce nearly equivalent quartet 
estimates (Giacovazzo, Camalli & Spagna, 1989) 
when only moduli are a priori known, the two formal- 
isms lead to quite different estimates when applied 
to a situation in which a large number of phases are 

also known. This unexpected result will prove of large 
practical interest, as shown in the paper by Burla, 
Cascarano & Giacovazzo (1992), and suggests that 
the probabilistic quartet theory, as formulated so far, 
is not completely satisfactory. Indeed, the different 
mathematical approximations involved in the 
approaches of Hauptman and Giacovazzo are far 
from being insignificant if they cause such striking 
differences. 
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Abstract 

In the first paper in this series [Giacovazzo, Burla & 
Cascarano (1992). Acta Cryst. A48, 901-906], the 
conditional joint probability distribution function of 
n phases given p >-- n moduli was derived. The proper- 
ties of the/concluding formulae are checked here. It 
is found that the distribution is not maximized by the 
correct phases, mostly because of bias in the formulae. 

If the triplets are estimated via the P10 formula 
[Cascarar~o, Giacovazzo, Camalli, Spagna, Burla, 
Nunzi & Polidori (1984). Acta Cryst. A40, 278-283] 
instead of being estimated by the Cochran relation- 
ship [Cochran (1952). Acta Cryst. 5, 65-67], the situ- 
ation is remarkably improved but further improve- 
ments are needed. A practical procedure is also 
described that successfully uses phase relationships 
to solve difficult structures. 
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Symbols and notation 

We will adopt the same symbols and notation used 
in the first paper in this series (Giacovazzo, Burla & 
Cascarano, 1992) (hereafter referred to as paper I). 

I. Introduction 

In paper I, the joint probability distribution of n 
phases given p -> n moduli was derived. Two formulae 
were obtained, both including terms of order up to 
N -1. The first [(I.14) i.e. equation (14) of paper I] 
was derived by following the Hauptman approach. 
For ease of reference it is quoted here: 

P(~I , . . . ,~ , IR~ , . . . ,Rp)  

~-(1/L)exp(  ~ T/jlCOStijl+ 
\ triplets quartets 

where 

\ 
Qijlm COS qijlm ) , 

(1) 

= (wsRs-ws)  Qiflm nijlm [ w + ' 2 
.+ t 2 v 2 

( w 6 R  6 W6) "JI- ( W7) ] -- w 7 R  7 - . 

w = 1, w~ = 0 always except when the cross magnitude 
R~ is a priori known (in this case, w~ = 1) and w'~ = 0 
always except when R~ is a priori known and ~ is 

' =1). unknown (in this case, w, 
The second formula [(1.21)] was derived by follow- 

ing Giacovazzo's approach and is 

P ( ~ , . . . , ~ , I R 1 , . . . , R p )  

= ( 1 / L ) e x p (  ~e Tutc°stu'+ E 
tri ts quartets 

Q~lrn cos qijtm ) ,  

(2) 
where 

Q~lm = ni j lm( W "[- W5E 5 "[- W6E 6 -JI- W7E7) / (1 + Zotm) -1, 

Zijlm = [ ( E 1 E2 "31- E3 E4) W5 E5 "~- ( E 1 E3 "3L E2 E4) W6 E6 

+ (8184 + E283)w787] /2N.  

In paper I it was emphasized that the two formulae 
diverge when a sufficiently large number of phases 
are involved in the distributions. The first aim of this 
paper is to study the main features of (1) and (2) and 
to check their potential usefulness in practical appli- 
cations. 

2. A practical procedure 

To check the features of (1) and (2) we should first 
extend the preceding theoretical results to space 
groups with symmetry higher than triclinic. 

A rigorous calculation of the triplet contribution 
to the formulae should take into account the complete 
first representation (Giacovazzo, 1977) of each triplet 
to discover and treat suitably the so-called symmetry- 
inconsistent three-phase invariants (Giacovazzo, 

1974; Han & Langs, 1988; Giacovazzo, 1989; Burla 
& Giacovazzo, 1991). In the space groups handled in 
this paper, the percentage of symmetry-inconsistent 
triplets is negligible. Therefore, in our tests no special 
computing effort is made for selecting and properly 
evaluating the distribution of such triplets. 

Quartet estimates are markedly affected by the sym- 
metry. It was shown by Giacovazzo (1976) that a 
quartet can have more than three cross reflections. 
For example, 

(~ = ~hl "~- ~h2 "3t- ~h3 "Jr- ~h  4 hi + h2-F h3 + h4 = 0 

and 

~ '  = ~)h I "~- ~h2a s "3t- ~h3R s "~- ~t)h 4 hi + h2R, + h3Rs + h4 ---- 0 

are symmetry equivalent [R, is the rotation com- 
ponent of the sth symmetry operator Cs--= (Rs, T,)]. 
Accordingly, there are five cross vectors of ~ :  

hi+h2,  hi+h3,  h2+h3, 

hi + h2Rs, hi + h3Rs. 

The theory of representations is able to treat all 
such symmetry aspects. Accordingly, in our calcula- 
tions the complete contribution arising from all the 
cross terms is considered for each quartet. Thus, each 
quartet contribution in (1) or (2) takes into account 
the complete first representation of the quartet 
(Giacovazzo, 1980a). Again, as in the triplet case, 
symmetry-inconsistent quartets are not considered. 

The search for triplet and quartet invariants was 
made by means of a modified version of SIR88 (Burla, 
Camalli, Cascarano, Giacovazzo, Polidori, Spagna & 
Viterbo, 1989). To save CPU time all the reflections 
were stored in the central memory of the computer. 
Quartets were calculated not as the difference of two 
triplets but directly by seeking four vectorial indices 
that summed to zero. Therefore, the set of quartets 
contained both positive and negative estimated 
quartets. 

3. Maximization of P ( ~ , . . . ,  ~ ,  [R~ , . . . ,  Rp) 

An important feature of a well behaved condi- 
tional probability distribution function 
P(~Pl,---,  ~P,, I R 1 , . - - ,  Rp) should be 

P - -max imum for the correct set of phases. 

In other words, the value of P calculated for the 
correct set should be larger than for any of the infinite 
sets of phases generated by an unbiased source of 
random phase values. In this case, two important 
results ensue: (a) P could be used as a powerful 
figure of merit in a multisolution process; (b) the 
maximization of P could be the strategy for the phase- 
expansion process. In other words, as a phasing 
criterion we could associate with the reflection h the 
phase tPh that maximizes P. 



908 THE JOINT PROBABILITY DISTRIBUTION OF ANY SET OF PHASES. II 

Table 1. Code name, space group and crystallochemical 
data for test structures 

Structure Space 
code group 

APAPA (t) P4~2t2 
AZET (2) Pca21 
CEPHAL (3) C2 
ERGO (4) P21212 l 
GRA4 (5) P1 
INOS (6) P21/n 
LOGANIN (7) P212121 
MGHEX (s) P3 
MUNICH (9) C2 
NEWQB 0°) P1 
POCRO (t~) Bll2/m 
SCHWARZ 02) P1 
TPALA (~3) P21 
TPH O'*) B22~2 
WINTER Os) P21 

Table 2. CE P HA L  results 

Molecular  formula  Z 

C3oH37NtsOI6P2.6H20 8 
C21HI6CINO 8 
ClsH2tNO 4 8 n N T R I P  N Q U A R  S 
C28H4,10 8 
C30Hu2N204 2 50 6 298 14.4 
CeH1206.H20 8 (16.7) 
C17H2601o 4 [5.4] 
C4sH6sMgNI2012-2C1Oa-4CH3CN 3 100 113 4631 177.1 
C2oH16 8 (249.8) 
C24H2oN205 4 [2.7] 
CrsKSes 2 200 836 76092 927 
C46H7oO27 1 (1393) 
C2sH42N407 2 [20] 
C24H2oN2 12 334 3 7 5 1  645213 2768 
C52Hs3Nt IO16.3CH2C12 2 (4754) 

I l l ]  
References: (1) Suck, Manor & Saenger (1976); (2) Colens, Declercq, 

Germain, Putzeys & Van Meerssehe (1974); (3) Arora, Bates, Grady, Ger- 
main. Declercq & Powell (1976); (4) Hull, Leban, Main, White & Woolfson 
(1976); (5) unpublished; (6) D. A. Langs, H. C. Freeman, C. E. Nockolds 
& Y. L. Oh, unpublished; (7) Jones, Sheldrick, Gliisenkamp & Tietze (1980); 
(8) Karle & Karle (1981); (9) Szeimies-Seebach, Harnisch, Szeimies, Van 
Meerssche, Germain & Declercq (1978); (10) Grigg, Kemp, Sheldrick & 
Trotter (1978); (11) Nguyen-Huy Dung, Vo-Van Tien, Behm & Beurskens 
(1987); (12) B. Schweizer, unpublished; (13) G. D. Smith (Medical Founda- 
tion of Buffalo), unpublished; (14) Hoekstra, Vos, Braun & Hornstra (1975); 
(15) Butters, Hiitter, Jung, Pauls, Schmitt, Sheldriek & Winter (1981). 

To check if (1) and (2) can be considered to be 
well behaved distribution functions we selected the 
test structures given in Table 1. We found the follow- 
ing results. 

(a) The maximum of P(~Pt , . . . ,  ¢,  I RI , . . . ,  R,),  
when this is expanded only up to order N t/2, is 
obtained when 

S = Y. Tijl cos tot = max. (3) 
triplets 

coincides with Cochran's (1952) Equation (3) 
relationship 

S =  ~ p3(r) d r=max .  
v 

Stanley (1979, 1986) suggested that the maximization 
of S could be used for expanding and refining phase 
information. However, Altomare, Cascarano & 
Giacovazzo (1992) showed that such a criterion can- 
not work for complex structures. 

(b) The functions (1) and (2) will be maximum 
when 

S '=  E Tif f c o s  tif f -[- E Qijlm c o s  qijlm 
triplets quartets 

= m a x  (4) 

and 

S"= E T 0 ' cos t  0,+ Y. Q'[stmc°sqijtm 
triplets quartets 

=max,  (5) 

respectively. We must check if the quartet contribu- 
tion makes S' or S" a more useful figure than S. 

For  each value o f  n we give the number  o f  triplets ( N T R I P )  and  
o f  quartets ( N Q U A R )  found  among  the n phased reflections and 
the values o f  S, S '  and S" relative to the correct  structure,  to the 
Patterson solution (in parentheses) and to a random solution (in 
square brackets) .  

S p S" 
212.8 136.4 

(358.1) (231.2) 
[5.3] [2.5] 

1276 1253 
(2684) (2637) 
[-15] [19] 
5641 10844 

(15939) (27063) 
[136] [173] 

10742 49344 
(37945) (148354) 

[-10] [313] 

(c) The property that S and/or  S' and/or  S" are 
expected to be maxima for the correct solution holds 
asymptotically: it is probably satisfied when large 
numbers of phases and moduli are involved in the 
distributions. While p can always be assumed to 
coincide with the total number of measured reflec- 
tions (i.e. the total prior information), the choice of 
n is not univocal (n is continuously varying during 
the phasing process). Very efficient probability distri- 
butions will be those for which (3), (4) or (5) are 
satisfied by the correct solution and for relatively 
small values of n. 

(d) Symmorphic space groups are of particular 
interest for our tests. Indeed, in such space groups 
the so called 'Patterson solution' (where all the tijt 
and qijtm are zero) is frequently encountered among 
the trials produced in a multisolution process. Even 
if the Patterson solution is not the required solution 
it always corresponds, by definition, to the maximum 
value of S. Thus the effectiveness of the criteria (3), 
(4) and (5) can easily be estimated by comparing in 
symmorphic space groups the values S, S' and S" of 
the true solution with those of the Patterson solution. 
A supplementary test on a random set of phases 
(random solution) will show how the figures corre- 
sponding to a random set differ from those of the 
organized (true and Patterson) solutions. 

In accordance with points (a ) - (d )  we selected from 
Table 1 the structures CEPHAL, MUNICH and 
SCHWARZ, which all crystallize in symmorphic 
space groups. In Tables 2 to 4, the values of S, S' 
and S" corresponding to the correct structure, to the 
Patterson solution and to a random solution are 
shown for each structure and for different values of 
n. To study the asymptotic behaviour of (1) and (2) 
we used different values of n. The maximum value 
of n in Tables 2 to 4 is NREF, the number of active 
reflectiofis chosen by SIR88 in the phasing process. 
For each value of n, the numbers of triplets (NTRIP) 
and quartets (NQUAR) are given. Values of S, S' and 
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Table 3. M U N I C H  results 

See caption of  Table 2 for explanation. 

n NTRIP NQUAR 

50 34 317 

150 535 27964 

310 3704 509781 

S S' S" 

85.3 294 273 
(100.2) (494) (434) 
[-15.8] [-26] [-18] 

723 3159 7076 
(1053) (6831) (15767) 
[-63] [28] [-72] 
2864 2860 50449 

(4810) (6486) (140937) 
[-45] [218] [151] 

Table 4. S C H W A R Z  results 

See caption of  Table 2 for explanation. 

n NTRIP NQUAR 

50 22 192 

250 917 57414 

470 4556 606573 

S S' S" 

110 559 355 
(118) (710) (433) 
[-27] [9.7] [21] 
1920 16446 27333 

(2417) (33327) (48734) 
[-32] [123] [367] 
6002 24615 148620 

(8551) (74364) (312052) 
[-105] [208] [-92] 

Table 5. The values of the quartet term in (4) and (5) 
for CEPHAL, M U N I C H  and S C H W A R Z  at different 

values of n 

CEPHAL MUNICH SCHWARZ 
n SQ SQ" SQ SQ" SQ SQ" 

50 198 122 208 188 449 245 
150 2964 4024 2435 6352 5715 5609 
250 6630 19467 2300 27614 14526 25413 
300 8323 33958 782 43519 17107 42100 
500 -10425 140568 -29555 155110 16874 165631 

S" are given for the correct solution, for the Patterson 
solution (in parentheses) and for a random solution 
(in square brackets). The following points are easily 
seen. 

(a) Equation (3) is in general not satisfied for the 
correct structure. For any value of n, S is always 
maximum for the Patterson solution. 

(b) Even if the average reliability parameter of the 
quartets is small, their large number makes their con- 
tribution non-negligible and often dominant. Thus, 
their unbiased estimate is of basic importance for the 
success of criteria (4) and (5). 

(c) When n is large, the contribution of the 
quartets is greatly underestimated in (1) and over- 
estimated in (2). We have listed in Table 5 the quartet 
contributions to (1) and to (2) [as SQ and SQ" respec- 
tively] for the correct structures and for different 
values of n. SQ decreases when n is above a certain 
threshold: then all the large cross reflections are 
phased and they give no contribution to SQ. In some 
cases, SQ becomes negative, which is unacceptable 
for a well behaved distribution. 

Table 6. The contribution to SQ" arising from the 
negative estimated quartets ( SQN") only 

The contributions are given for the correct structure and, in 
parentheses, for the Patterson solution. 

CEPHAL MUNICH SCHWARZ 
n SQ" SQN" sO" SON" sO" SQN" 

500 140568 4021 155110 4666 165631 1946 
(517477) (-56536) (590584) (-67642) (359618) (-19029) 

(d) In addition to (3), the criteria (4) and (5) are 
not satisfied by the correct structure (things get 
worse!). The asymptotic properties of (1) are worse 
than those of (2) but both seem to have some bias. 

From the points (a)-(d) ,  the following questions 
arise: is the Patterson solution the 'natural'  set of 
phases and moduli to maximize S, S' and S"? Does 
some information exist that is not well exploited by 
(1) and (2) and that can make S' and/or  S" maxima 
for the true structures ? A possible answer to the above 
questions is not too difficult: such information is 
contained in the negative triplet and quartet 
invariants. Distributions able to recognize and esti- 
mate them closely should also make (4) and (5) true 
for the correct structure. In Table 6, we emphasize, 
for the correct and for the Patterson structures, the 
contribution to SQ" arising from the negative esti- 
mated quartets (SQN") only. It is immediately seen 
that SQN" tends to maximize S" for the correct struc- 
ture and simultaneously to reduce the value of S" for 
the Patterson solution. However, its contribution is 
not relevant owing to the fact that the reliability 
parameter (i.e. Q"otr,,) for negative quartets is rather 
small in modulus. More accurate expressions for 
Q"ot,, will produce more accurate distributions. 

The same observation may be applied to the triplet 
invariants. We could replace in (2) the Cochran relia- 
bility parameter T~jt = 2]E, EjEt]/N 1/2 by the reliability 
parameter offered by the P10 formula (Cascarano, 
Giacovazzo, Camalli, Spagna, Burla, Nunzi & 
Polidori, 1984). This parameter is able to recognize 
in favourable cases most of the negative triplets and 
is thus able in principle to improve the efficiency of 
the criteria (3), (4) and (5). In Table 7 the values of 
S obtained by using the P10 formula are compared 
with those given in Tables 2 to 4. Clearly, the use of 
the P10 formula remarkably improves the efficiency 
of the distributions (1) and (2) but again the contribu- 
tion arising from the negative triplets is not sufficient, 
for CEPHAL, M U N I C H  and SCHWARZ, to make 
S maximum for the correct structure. The above 
results, however, strongly recommend the use of the 
P10 formula. 

A supplementary test has been made for POCRO 
(space group B 112/m): owing to the small structural 
complexity, invariant estimates are more reliable. S, 
SQ" and S" were calculated for n = N R E F =  96 by 
estimating triplets via the P10 formula. The results 
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Table 7. A comparison of the values of S obtained 
by using the P10 formula with those given in 

Tables 2 to 4 

The P10 formula values were calculated with n = NREF. The 
corresponding values obtained by using Cochran's parameter (see 
Tables 2 to 4) are given in parentheses. 

PaRerson True 
n solution structure 

CEPHAL 334 4534 3034 
(4754) (2768) 

MUNICH 310 4518 3178 
(4810) (2864) 

SCHWARZ 470 8296 6495 
(8551) (6002) 

Table 8. Values of S, SQ" and S" for POCRO, 
CEPHAL, MUNICH and SCHWARZ 

Values estimated using the P10 formula with n = NREF = 96 are 
given together with the corresponding values for the Patterson 
solution (in parentheses). 

NTRIP NQUAR S SQ" S" 

POCRO 1163 30001 3862 37417 41279 
(3862) (35486)  (39348) 

CEPHAL 3121 652539 3034 46577 49611 
(4534) (143600) (148134) 

MUNICH 2839 517215 3178 47584 50763 
(4518) (136128) (140646) 

SCHWARZ 3825 606573 6495 142618  149113 
(8296) (303501) (311798) 

are summarized in Table 8; the data relating to the 
Patterson solution are given in parentheses. Now the 
higher accuracy of the probabilistic formulae makes 
S" maximum for the correct solution. For the more 
complicated structures CEPHAL, MUNICH and 
SCHWARZ, S" is not maximum for the correct 
solution (see Table 8). 

4. Active use of the probability distribution functions 

The distributions (1) and (2) can be modified by 
standard methods to obtain the conditional distribu- 
tion P(¢1, ¢ 2 , . . . ,  ~0, ) ~ 1 , . . . ,  Rp). Two tangent for- 
mulae can then be derived that are similar to those 
already obtained by Giacovazzo (1980b). The first 
derives from (1) and may be written as 

tan ~h ~-- [ ~  Th,k sin (~k + ~-k) 

÷ Z Qh,k,l sin (~k + ~', + ¢~-k-,) ] 
k,! 

× r , . ,  c o s  

+ Z G,,,,,, cos + + ] - '  
k,l 

= A h / B h  (6) 

with the reliability parameter given by t~h = 
( A 2 +  B2) 1/2. The second type of formula derives from 
(2) and leads to 

t an  ~Oh "-" [~k Th'k sin (q~k + ~ -k )  

)-'- Q~,kJ sin (~k + ~t + ~0h-k-l) ] + 
k,1 .1 

× rh,k COS 

+ ~, " ] Qh,k,I COS ( ~ k  ÷ ~01÷ f f~-k- l )  
k,I J 

= A~/B~, (7) 

with the reliability parameter given by c~g= 
(A~ 2 + B~2) 1/2 

The following points should be noted. 
(a) The use of (6) or (7) in a refinement process 

requires quite different procedures. Q" in (7) depends 
on the cross magnitudes only: its value, once esti- 
mated, does not change during the phasing process. 
In contrast, Q in (6) depends on both the cross 
magnitudes and the cross phases. Its value has to be 
recalculated during the phasing process as soon as a 
cross reflection is phased (which is time consuming). 

(b) The experimental results in the preceding sec- 
tion discourage any attempt to use (6). However, we 
wrote a special program to check its usefulness: we 
found (6) much less efficient than the classical tangent 
formula based on triplets only (much computing time 
was wasted). For brevity, the relative experimental 
results are not quoted. 

(c) In the preceding section, the use of the P10 
formula has been encouraged. Thus, from now on, 
when we refer to (7), we will assume that Th,k corre- 
sponds to the Cochran or the P10 parameter accord- 
ing to circumstances. 

In accordance with the points (a)-(c) ,  we devised 
the following direct procedure. 

(1) Triplet relationships are found among the 
NREF reflections. They can be estimated according 
to the Cochran relationship or the P10 formula. 

(2) The convergence-divergence program of 
SIR88 is run to select among NRAND_<NREF 
reflections the origin- and enantiomorph-fixing reflec- 
tions. Random phase values (with the symmetry 
restricted when necessary) are associated with the 
NRAND reflections (Baggio, Woolfson, Declercq & 
Germain, 1978), with unit weight for the origin- and 
enantiomorph-fixing reflections and with a weight of 
0.8 for the others. 

(3) Quartet relationships can eventually be found 
and estimated among the NRAND reflections. In this 
case, the user has to take care that NRAND does not 
exceed a certain threshold (see Tables 2-4) otherwise 
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Table 9. Success and failure for the phasing process 
according to various protocols 

Protocol  1: on ly  triplets es t imated by the Cochran  fo rmula  are 
used; Protocol  2: only  triplets es t imated by  the P10 formula  are 
used; Protocol  3: triplets es t imated by Cochran  and  quartets  are 
s imul taneously  used;  Protocol  4 : P 1 0  triplets and quartets  are used. 
NOT:  number  o f  trials. Y denotes  success o f  the phasing process,  
N denotes  failure. 

Structure NOT Protocol Protocol Protocol Protocol 
code 1 2 3 4 

APAPA 300 Y Y Y Y 
AZET 200 N Y N Y 
CEPHAL 200 N Y N Y 
ERGO 400 N Y N Y 
GRA4 50 N Y N Y 
INOS 50 Y Y Y Y 
LOGANIN 100 Y Y Y Y 
MGHEX 400 N Y N Y 
MUNICH 400 N Y N N 
NEWQB 200 N Y Y Y 
POCRO 20 Y Y Y Y 
SCHWARZ 400 N Y N Y 
TPALA 400 N Y N N 
TPH 400 Y Y Y Y 
WINTER 400 N Y N N 

a very large set of quartets must be estimated (which 
is time consuming). 

(5) Cycles of phase refinement are made on the 
NRAND phases. After convergence, the phasing pro- 
cess is extended to the NREF reflections. 

We first checked the efficiency of the above- 
described phasing process by using only triplet 
relationships. N R A N D = N R E F / 2  proved to be a 
reasonable choice: Cochran estimates were first used 
(protocol 1) and then P10 estimates (protocol 2). The 
results are shown in Table 9. The following points 
should be noted. 

(a) Large numbers of trials (NOT) were made for 
most of the structures to emphasize the different 
efficiencies of the Cochran and P10 estimates. In fact, 
smaller numbers of trials also allow the structure 
solution in most of the cases: e.g. the first correct 
solution for APAPA is at 11, for ERGO it is at 109, 
for M G H E X  it is at 85 etc. 

(b) The combination ' P 1 0 - r a n d o m  approach' is 
much more efficient than the combination 'Cochran - 
random approach'. This is probably due to the larger 
reliability of the P10 estimates. Accordingly, it may 
be concluded that the recovery of the correct set of 
phases from a random one is easier when reliable 
phase relationships are used. 

To understand the role of the quartet invariants in 
the above phasing process: (a) we chose N R A N D  = 
90 to limit the amount of computing time; (b) we 
constructed quartets by allowing the basis vectors to 
vary among the N R A N D  reflections; (c) formula (7) 
was applied for phase determination and refinement. 
The triplet reliability factor T was derived from the 
Cochran formula (protocol 3) and from P10 (proto- 
col 4). 

Table 10. Results for TPALA showing that triplet 
( P 1 O) and quartet relationships are arranged according 

to their reliability parameters 

T: triplets; Q"; quartets.  N T  and NQ are the numbers  o f  tr iplet  
and quartet  re la t ionships  with concent ra t ion  parameters  larger than 
given values o f  T and Q", respectively.  The  numbers  o f  wrongly 
est imated cosine signs are given in parentheses.  

T, Q" N T  NQ 

0.8 2557 (263) 8509 (1518) 
1.2 1960 (174) 5372 (790) 
1.6 1429 (111) 2394 (331 ) 
2.0 1027 (68) 639 (84) 
2.6 579 (25) 
3.8 166 (6) 

The results are shown in Table 9. We observe that 
the use of quartets allows the additional solution of 
NEWQB (unsolved in protocol 1). In contrast, the 
combined use of P10-estimated triplets and quartets 
is not able to solve MUNICH,  TPALA and WINTER, 
which are solved by using P10 triplets only. In con- 
clusion, the additional use of quartet relationships 
(their number is generally comparable with that of 
the triplets) proved to be less advantageous than 
expected. This loss of efficiency is only partially due 
to the correlation between triplet and quartet informa- 
tion (i.e. a quartet is the sum of two triplets). The 
main reason is probably the lower reliability of the 
quartet estimates (first representation formula) with 
respect to the triplet estimates (first and second rep- 
resentation formulae). As an example, in Table 10 
we show how triplets and quartets, as calculated for 
TPALA, are arranged in decreasing order of their 
concentration parameters T and Q", respectively. 

A double-check of our conclusions may be 
obtained by eliminating from the set of active quartets 
those that are wrongly estimated (positive estimated 
quartets that are actually negative and vice versa). 
Under these conditions, the application of (7) is 
successful. 

5. Concluding remarks 

In paper I, two expressions for the conditional joint 
probability distribution function of n phases given 
p >  n moduli were derived. Both the distributions 
include triplet and quartet invariant contributions: 
the first distribution may be considered a develop- 
ment of Hauptman's mathematical approach, the 
second of Giacovazzo's approach. In this paper, we 
have checked some properties of the distributions 
and their usefulness for phase solution. We found 
that both distributions are not maximized by the 
correct phases, as one would expect for a well behaved 
distribution. This may be ascribed to the limited 
accuracy of the probabilistic formulae estimating trip- 
let and quartet invariants and to some insufficiency 
in the mathematics used by Hauptman and 
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Giacovazzo. Replacing in the distributions the 
Cochran concentration parameter of a triplet by the 
corresponding P10 parameter of the same triplet 
remarkably improves the behaviour of the distribu- 
tions although further improvements are needed. 
Their maximization requires better probabilistic 
theories; in particular, higher efficiency for the esti- 
mation of negative quartet invariants. 

The tangent formula (including triplets and quartet 
contributions) based on the mathematical approach 
of Giacovazzo proved to be the only one suitable for 
phase expansion and refinement. The formula was 
included in a random approach to structure determi- 
nation. The additional use of quartets was not helpful 
owing to the limited accuracy of quartet estimates. 
Replacing in the triplet contribution the Cochran 
concentration parameter by the corresponding P10 
parameter remarkably improved the efficiency of the 
phasing process. But again the combination of P10 
estimated triplets with quartets proved less efficient. 
The reason for such a failure is ascribed to the limited 
accuracy of the probabilistic formulae estimating 
quartets. A substantial improvement of such formulae 
is considered a necessary condition for the success 
of the active use of the quartets in the phasing process. 

The authors thank C. Chiarella for technical contri- 
bution. 
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Abstract 

A novel method of function minimization that com- 
bines the power of the diagonal approximation to the 
normal matrix with conjugate directions is described. 

0108-7673/92/060912-05506.00 

This method approaches closer to the local minimum 
than the methods that are commonly used in 
macromolecular refinement. The weaknesses of the 
current methods are analyzed to explain the advan- 
tage of the conjugate-direction method. 
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